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Pricing Options on Commodity Futures: 
The Role of Weather and Storage 
 
Abstract: Options on agricultural futures are popular financial instruments used for 
agricultural price risk management and to speculate on future price movements. Poor 
performance of Black’s classical option pricing model has stimulated many researchers to 
introduce pricing models that are more consistent with observed option premiums. 
However, most models are motivated solely from the standpoint of the time series 
properties of futures prices and need for improvements in forecasting and hedging 
performance. In this paper I propose a novel arbitrage pricing model motivated from the 
economic theory of optimal storage and consistent with implications of plant physiology on 
the importance of weather stress. I introduce a pricing model for options on futures based 
on a generalized lambda distribution (GLD) that allows greater flexibility in higher moments 
of the expected terminal distribution of futures price. I use times and sales data for corn 
futures and options for the period 1995-2009 to estimate the implied skewness parameter 
separately for each trading day. An economic explanation is then presented for inter-year 
variations in implied skewness based on the theory of storage. After controlling for changes 
in planned acreage, I find a statistically significant negative relationship between ending 
stocks-to-use and implied skewness, as predicted by the theory of storage. Furthermore, 
intra-year dynamics of implied skewness reflect the fact that uncertainty in corn supply is 
resolved between late June and early October, i.e., during corn growth phases that 
encompass corn silking and grain maturity. Impacts of storage and weather on the 
distribution of terminal futures price jointly explain upward-sloping implied volatility curves. 
 
Keywords: arbitrage pricing model, options on futures, generalized lambda distribution, 
theory of storage, skewness 
JEL classification: G13, Q11, Q14 
 
 
Odreðivanje cijena opcija na futures ugovore za poljoprivredne  
proizvode: utjecaj vremenskih uvjeta i zaliha 
 
Sa�etak: Opcije na futures ugovore za poljoprivredne proizvode su èesto korišteni 
financijski instrumenti u upravljanju cjenovnim rizikom u poljoprivredi i pri špekuliranju o 
smjeru kretanja futures cijena. Slabosti klasiènog Blackovog modela potakle su mnoge 
istra�ivaèe da predlo�e nove modele za odreðivanje cijena opcijskih ugovora koji su više u 
skladu s opa�enim premijama opcijskih ugovora. Meðutim, takvi modeli su gotovo bez 
iznimke osmišljeni iskljuèivo na temelju znaèajki vremenskih nizova cijena terminskih 
ugovora i potrebe za poboljšanjem predviðanja i hedginga. Ovaj rad predla�e novi arbitra�ni 
model za odreðivanje cijena opcija polazeæi od ekonomske teorije o optimalnom upravljanju 
zalihama i vodeæi raèuna o implikacijama fiziologije bilja na va�nost vremenskih uvjeta pri 
rastu. Predstavljen je model za odreðivanje cijena opcija na terminske ugovore zasnovan na 
generaliziranoj lambda distribuciji (GLD) koja omoguæava veæu fleksibilnost u višim 
momentima oèekivane krajnje distribucije cijena terminskih ugovora. Podaci o svim 
zabilje�enim transakcijama opcijskim i terminskim ugovorima za kukuruz u razdoblju 1995.-
2009. korišteni su pri procjeni impliciranih parametara asimetrije, posebno za svaki radni 
dan. Kontrolirajuæi za utjecaj promjena u planiranoj površini za sadnju, nalazim statistièki 
znaèajan negativan utjecaj odnosa zaliha i potra�nje na implicirani parametar asimetrije, u 
skladu s hipotezom koja slijedi iz teorije o zalihama. Nadalje, dinamika promjena parametra 
asimetrije unutar iste godine reflektira èinjenicu da se neizvjesnost o konaènoj velièini �etve 
razrješava od lipnja do listopada, tj. u vremenskom razdoblju koje obuhvaæa reproduktivnu 
fazu rasta kukuruza i fazu dozrijevanja zrna. Utjecaj zaliha i vremenskih uvjeta objašnjava 
pojavu pozitivnog nagiba krivulja implicirane volatilnosti. 
 
Kljuène rijeèi: arbitra�ni model cijena, opcije na futures ugovore, generalizirana lambda 
distribucija, teorija zaliha, asimetrija 
JEL klasifikacija: G13, Q11, Q14 
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1 Introduction* 
 

Options written on commodity futures have been investigated from several aspects in the 

commodity economics literature. For example, Lence, Sakong and Hayes (1994), 

Vercammen (1995), Lien and Wong (2002), and Adam-Müller and Panaretou (2009) 

considered the role of options in optimal hedging. Use of options in agricultural policy 

was examined by Gardner (1977), Glauber and Miranda (1989), and Buschena and 

McNew (2008). The effects of news on options prices have been investigated by 

Fortenbery and Sumner (1993), Isengildina-Massa et al. (2008), and Thomsen, McKenzie 

and Power (2009). The informational content of options prices has been looked into by 

Fackler and King (1990), Sherrick, Garcia and Tirupattur (1996), and Egelkraut, Garcia 

and Sherrick (2007). Some of the most interesting work done in this area considers 

modifications to the standard Black-Scholes formula that accounts for non-normality 

(skewness, leptokurtosis) of price innovations, heteroskedasticity, and specifics of 

commodity spot prices (i.e., mean-reversion). Examples include Kang and Brorsen (1995) 

and Ji and Brorsen (2009). 

 

In this article I revisit the well-known fact that the classical Black’s (1976a) model is 

inconsistent with observed option premiums. Previous studies like Fackler and King 

(1990) and Sherrick, Garcia and Tirupattur (1996) address this puzzle by identifying 

properties of futures prices that deviate from the assumptions of Black’s model, i.e., 

leptokurtic and skewed distributions of the logarithm of terminal futures prices and 

stochastic volatility. A common feature of past studies is the grounding of their 

arguments in the time-series properties of stochastic processes for futures prices and the 

distributional properties of terminal futures prices. In other words, their arguments are 

primarily statistical. In contrast to previous studies, I offer an economic explanation for 

the observed statistical characteristics. In this paper I analyze in detail options on corn 

futures. The focus is on presenting an alternative pricing model that is not motivated by 

improving the forecasts of options premiums compared to Black’s or other models, but 

by linking option pricing models with the economics of supply for annually harvested 

storable agricultural commodities. In particular, I demonstrate the effect of storability 

and crop physiology (i.e., susceptibility to weather stress) on higher moments of the 

futures price distribution. Only by understanding these fundamental economic forces 

can we truly explain why classical option pricing models work so poorly for commodity 

futures. 

 

The article is organized as follows. In the second section I examine in detail the 

implications of Black’s classical option pricing model on the shape and dynamics of the 

futures price distribution. I follow by presenting the rational expectations competitive 

equilibrium model with storage, and testable hypothesis on conditional new crop price 

distributions that follow from it. In addition to storage, I present the agronomical 

                                                 
* This paper has benefited from helpful discussions with Jennifer Alix-Garcia, Jean-Paul Chavas, Bjorn Eraker, Jeremy 

D. Foltz, T. Randall Fortenbery, Bruce E. Hansen, James E. Hodder, Paul D. Mitchell, as well as participants at UW-

Madison and The Institute of Economics, Zagreb seminars and NCCC-134 meetings. The usual disclaimer applies. 
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research on the impact of weather on corn yields. I then develop a novel arbitrage pricing 

model for options on commodity futures based on the generalized lambda distribution 

(GLD) which I propose to use in calibrating skewness of new crop futures price to match 

observed option premiums. The third section describes the econometric model. In the 

fourth section I summarize the data used in the econometric analysis. Finally, I describe 

the estimation procedure and present results of statistical inference, followed by a set of 

conclusions and directions for further research. 

 

 

2 Theory 
 

2.1 Foundations of Arbitrage Pricing Theory for Options on Futures 
 

Black (1976) was the first to offer an arbitrage pricing model for options on futures 

contracts. Despite numerous extensions and modifications proposed in the literature, and 

the inability of the model to explain observed option premiums, traders still use this 

model in practice, and widely used information systems for traders (e.g., Bloomberg) use 

this as their workhorse model for commodity options. This is likely due to its simplicity 

and ability to forecast option premiums after appropriate “tweaks” are put in place. Black 

proposes that futures prices follow a stochastic process as described below:  

 

dF Fdzσ=  (1)

 

where F  stands for futures price, σ  for volatility, and dz  is an increment of Brownian 

motion. 

 

The implication is that futures prices are unbiased expectations of terminal futures prices 

(ideally equal to the spot price at expiration), and the stochastic process followed by 

futures prices is a geometric Brownian motion. 

 

The option premium V  is equal to the present value of the expected option payoff 

under a risk-neutral distribution for terminal prices. For example, for a call option with 

strike K , volatility σ , risk-free interest rate r , and time left to maturity T : 

 

( ) ( ) ( )0 00
, , , , ,0 ; , , ,rT

T T TV K F T r e Max F K f F F r T dFσ σ
∞−= −∫ . (2)

 

Because delta hedging options on futures do not require a hedger to pay the full value of 

the futures contract due to margin trading, a risk-neutral terminal distribution for 

futures prices is equivalent to a risk-neutral terminal distribution for a stock that pays a 

dividend yield equal to the risk-free interest rate:  

 

2 2
0

1ln ~ ln ,
2TF N F Tσ σ⎛ ⎞−⎜ ⎟

⎝ ⎠
. (3)
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Thus, Black’s model postulates that the distribution of terminal futures prices, 

conditional on information known at time zero, is lognormal with the first four 

moments fully determined by the current futures price and volatility parameter σ . In 

particular, the first four moments of the risk-neutral terminal distribution are equal to:  

 

( ) 2 22 2 2 22
0

4 32
0

2( 2) 31 1 2t t t t t tF F e SKEW KUe e e eRT eσ σ σ σσ σμ σ += = + +− = − =% % . (4)

 

For example, if a futures price is $2.50, volatility is 30 percent, and there are 160 days left 

to maturity, the standard deviation of the terminal distribution would be $0.50, skewness 

would be 0.60, and kurtosis would be 3.64. Therefore, the standard Black’s model implies 

that the expected distribution of terminal prices would be positively skewed and 

leptokurtic. When complaints are raised that Black’s model imposes normality 

restrictions, it is the logarithm of the terminal price that the critique refers to.  

 

The standard way to check if Black’s model is an appropriate pricing strategy is to exploit 

the fact that for a given futures price, strike price, risk-free interest rate, and time to 

maturity, the model postulates a one-to-one relationship between the volatility coefficient 

and the option premium. Thus, the pricing function can be inverted to infer the 

volatility coefficient from an observed option premium. Such coefficients are referred to 

as implied volatility (IV) and the principal testable implication of Black’s model is that 

implied volatility does not depend on how deep in-the-money or out-of-money an option 

is. If the logarithm of the terminal price is not normally distributed, then Black’s model 

is not appropriate, and implied volatility will vary with option moneyness – a flagrant 

violation of the model’s assumptions. Black’s model gives us a pricing formula for 

European options on futures. Prices of American options on futures that are assumed to 

follow the same stochastic process as in Black’s model must also account for the 

possibility of early exercise. For that reason, their prices cannot be obtained through a 

closed-form formula, but must be estimated through numerical methods such as the Cox, 

Ross and Rubinstein (CRR) (1979) binomial trees.  

 

Implied volatility curves for storable commodity products are almost always upward 

sloping. As an example consider the December 2006 corn contract. The futures price on 

June 26, 2006 was $2.49/bu. As seen in Figure 1, the implied volatility curve associated 

with calculating IV using various December option strikes is strongly upward sloping, 

with the implied volatility coefficients for the highest strike options close to 15 

percentage points higher than the implied volatility for options with lower strikes. 

 

Geman (2005) calls this phenomenon an “inverse leverage effect,” after the “leverage 

effect” proposed to explain downward-sloping implied volatility curves for individual 

company stocks. However, this is a complete misnomer. As Black (1976b) explains, the 

leverage effect arises from the fact that as stock price declines, the ratio of a company’s 

debts to equity value, its leverage, increases. If the volatility of company assets is constant, 

then as the equity share of assets declines, volatility in equity will increase. While the 
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leverage effect has the coherent causal model to justify the term, nothing similar exists 

for “inverse leverage effect.” 

 

We can gain further insight as to how Black’s model performs if we plot the implied 

volatility curve for a single contract at different time-to-maturity horizons. As an 

example, consider December corn contracts in the years 2004 and 2006. As Figure 2 

shows, three distinct patterns are noticeable. First, except when options are very near 

maturity, we always see an upward-sloping implied volatility curve. Second, implied 

volatility of at-the-money options, i.e., options that have the strike price equal to the 

current futures price, rises almost linearly until the end of June, declines throughout the 

summer months, and then starts rising again. Finally, near maturity, volatility skews give 

way to symmetric volatility smiles. The implied volatility coefficient measures volatility 

on an annual basis, and the variance of the terminal price, conditional on time 

remaining to maturity, is ( )2 T tσ − . So if uncertainty about the terminal price is 

uniformly resolved as time passes, implied volatility will not decrease, but will stay the 

same. Likewise, when the same amount of uncertainty needs to be resolved in a shorter 

time interval, implied volatility will increase. Therefore, linear increases in implied 

volatility from distant horizons up until June are best interpreted not as increases in day 

to day volatility of futures price changes, but as a market consensus that the conditional 

variance of terminal prices is not much reduced before June. 

 

While CRR binomial trees preserve the basic restrictions of Black’s model, i.e., normality 

of log-prices terminal distribution, Rubinstein (1994; 1998) shows how that can be 

relaxed to allow for non-normal skewness and kurtosis. To illustrate the effect of 

skewness and kurtosis on Black’s implied volatility I used Edgeworth binomial trees 

(Rubinstein, 1998). This allows for pricing options that exhibit skewed and leptokurtic 

distributions of terminal log-prices. As can be seen in Figure 3, zero skewness and no 

excess kurtosis (S=0, K=3) corresponds to a flat IV curve, i.e., CRR implied volatility 

estimated from options premiums is the same no matter what strike is used to infer it, 

just like Black’s model would have it. A leptokurtic distribution will cause so-called 

“smiles”, i.e., options with strikes further away from the current futures price will 

produce higher implied volatility coefficients. Positive skewness creates an upward-

sloping curve, and negative skewness a downward-sloping IV curve. 

 

Faced with the inability of Black’s model to explain observed option premiums, 

researchers and traders have pursued three different approaches to address this issue: 

 

1) Start from the end: relax the assumptions concerning risk-neutral terminal 

distributions of underlying futures prices, i.e., allow for non-lognormal skewness 

and kurtosis. As long as delta hedging is possible at all times (i.e., markets are 

complete), it is still possible to calculate option premiums as the present value of 

expected option payoffs. Examples of this approach include Jarrow and Rudd 

(1982), Sherrick et al. (1996), and Rubinstein (1998). While the formulas that 

derive option premiums as discounted expected payoffs assume that options are 
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European, one can still price American options using implied binomial trees 

calibrated to the terminal distribution of choice (Rubinstein, 1994).  

 

2) Start from the beginning: start by asking what kind of stochastic process is 

consistent with a non-normal terminal distribution. By introducing appropriate 

stochastic volatility and/or jumps, one might be able to fit the data just as well as 

by the approach above. Examples of this approach are Kang and Brorsen (1995), 

Hilliard and Reis (1998), and Ji and Brorsen (2009). 

 

3) “Tweak it so it works good enough” approach: if one is willing to sacrifice 

mathematical elegance, the coherence of the second approach, and insights that 

might emerge from the first approach, and if the only objective is the ability to 

forecast day-ahead option premiums, one can simply tweak Black’s model. An 

example of such an approach would be to model the volatility coefficient as a 

quadratic function of the strike. Even though it makes no theoretical sense (this 

is like saying that options with different strikes live in different universes), this 

approach will work good enough for many traders. A seminal article that 

evaluates the hedging effectiveness of such an approach is Dumas, Fleming and 

Whaley (1998). 

 

In this article I take the first approach, and modify Black’s model by modifying the 

terminal distribution of the futures price. Instead of a lognormal, I propose a generalized 

lambda distribution developed by Ramberg and Schmeiser (1974) and introduced to 

options pricing by Corrado (2001). An alternative would be to use Edgeworth binomial 

trees, but preliminary analysis showed that such an approach may not be adequate for 

situations where skewness and kurtosis are rather high. In addition, Edgeworth trees work 

with the skewness of terminal log-prices, while I prefer to have implied parameters for the 

skewness of terminal futures prices directly, not their logarithms. In addition, the GLD 

pricing model allows for a higher degree of flexibility in terms of skewness and kurtosis, 

i.e., its parameters are easy to imply from observed options prices and it is 

straightforward to develop a closed-form solution for pricing options. While these are all 

favorable characteristics, it is in fact the ability to gain additional economic insight that 

truly justifies yet another option pricing model. GLD allows us to get an explicit estimate 

of skewness and kurtosis of the terminal distributions, and that knowledge can be used to 

make a strong connection between the economics of supply and financial models for 

pricing options on commodity futures. 

 

 

2.2 Theory of Storage and Time-Series Properties of Commodity Spot 
and Futures Prices 

 

Deaton and Laroque (1992) used a rational expectations competitive storage model to 

explain nonlinearities in the time series of commodity prices: skewness, rare but dramatic 

substantial increases in prices, and a high degree of autocorrelation in prices from one 



 12 

harvest season to the next. The basic conclusion of their work was that inability to carry 

negative inventories introduces a non-linearity in prices that manifests itself in the above 

characteristics. 

 

This is an example of theory being employed in an attempt to replicate patterns of 

observed price data. In a similar fashion, but subtly different, Williams and Wright 

(1991) postulate that the moments of expected price distributions at harvest time vary 

with the current (pre-harvest) price and available carryout stocks, as shown in Figure 4. 

According to them, when observed at annual or quarterly frequency, spot prices exhibit 

positive autocorrelation which emerges because storage allows unusually high or low 

excess demand to be spread out over several years. Furthermore, the variance of price 

changes depends on the level of inventory. When stocks are high, and the spot price is 

low, the abundance of stored stocks serves as a buffer to price changes, and variance is 

low. When stocks are low, and thus spot price is high, stocks are nearly empty and unable 

to buffer price changes. Finally, the third moment of the price change distribution also 

varies with inventories. Since storage can always reduce the downward price pressure of a 

windfall harvest, but cannot do as much for a really bad harvest, large price increases are 

more common than large decreases. The magnitude of this cushioning effect of storage 

depends on the size of the stocks. In conclusion, one should expect commodity prices to 

be mean-stationary, heteroskedastic and with conditional skewness, where both the 

second and third moments depend on the size of the inventories. 

 

Testing the theory proceeds with this argument: if we can replicate the price pattern using 

a particular set of rationality assumptions, then we cannot refute the claim that people 

indeed behave in such manner. That is the road taken by Deaton and Laroque (1992) and 

Rui and Miranda (1995). However, since in the spot price series we only see the 

realizations of prices, not the conditional expectations of them, we cannot use spot price 

data to directly test what the market expected to happen. As such, predictions from storage 

theory focused on the scale and shape of expected distributions of new harvest spot 

prices have remained untested. In this paper I use options data to infer the conditional 

expectations of terminal futures prices, and therefore test the following prediction of the 

theory of storage:  

 

• The lower inventories are, the more positive the skewness of the conditional harvest 

futures price distribution will be. 

 

This is tested using an options pricing formula based on the generalized lambda 

distribution to calibrate the skewness and kurtosis of expected (conditional) harvest 

futures price distributions. Implied parameters from the model are then used to test the 

hypotheses above, as described in detail in section 4. 
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2.3 The Role of Weather for Intra-year Resolution of Price Uncertainty 
 

As demonstrated in section 2.1, a very small share of uncertainty concerning the terminal 

price of a new crop futures contract is resolved before June. A large part of uncertainty is 

resolved between late June and early October. The reason lies in corn physiology and the 

way weather stress impacts corn throughout the growing season. In the major corn 

producing areas of the U.S., corn is planted starting the last week of April. It takes about 

80 days after planting for a plant to reach its reproduction stage, also known as corn 

silking. At this juncture, the need for nutrients is highest, and moisture stress has a large 

impact on final yield. Weather continues to play an important role through the rest of 

the growing cycle, as summarized by Figure 5, taken from Shaw et al. (1988). 

 

Every month during the growing, the United States Department of Agriculture (USDA) 

publishes updated forecasts of corn yield per acre. At the beginning of the growing 

season, before corn starts silking, these forecasts are dominated by the long-run trend that 

reflects improvements in plant genetics. As can be seen in Figure 6, June forecasts of final 

yield deviated from trend value essentially the same in both the record yield year 

2004/2005, when final yield was 15 bushels above the trend, and the major draught year 

of 1988/89, when final yields were 32 bushels below the trend. However, uncertainty is 

quickly resolved in July and August. As shown in Figure 7, whereas June forecasts 

deviated from final estimates from the low of -11 percent in 1994/95 to the high of 45 

percent in 1988/89, the September estimate deviations ranged only from -7 percent to 12 

percent. 

 

A testable hypothesis that emerges from these stylized facts concerns the fundamental 

role of seasonality in uncertainty resolution, as well as pronounced negative skewness in 

deviations of final yields from trend values. In other words, do seasonal yield deviations 

contribute to a positive skewness of terminal price distribution and the dynamics of 

skewness throughout the marketing year? In particular, we might expect implied skewness 

to decrease throughout the growing season. 

 

 

2.4 Option Pricing Formula Using Generalized Lambda Distribution 
 

The generalized lambda distribution was developed by Ramberg and Schmeiser (1974), 

and its properties were described further by Ramberg et al. (1979). It was introduced to 

options pricing by Corrado (2001) who derived a formula for pricing options on non-

dividend paying stocks. Here I review the properties of GLD and adopt Corrado’s 

formula to options on futures. 

 

GLD is most easily described by a percentile function
1
 (i.e., inverse cumulative density 

function):  

 

                                                 
1 F here stands for futures price, not for cumulative density function.  
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( ) ( ) 43

1
2

1p p
F p

λλ

λ
λ

− −
= + . (5)

 

For example, to say that for ( )0.90, 4.5p F p= =  means that the market expects with a 

90 percent probability that the terminal futures price will be lower than or equal to 

$4.50/bu.  

 

GLD has four parameters: 1λ  controls location, 2λ  determines variance, and 3λ  and 4λ  
jointly determine skewness and kurtosis. In particular, the mean and variance are 

calculated as follows:  

 

( )
1 2

2 2 2
2

/

/

A

B A

μ λ λ

σ λ

= +

= −
 (6)

 

with 

3 4

1 1
1 1

A
λ λ

= −
+ +  

and ( )3 4
3 4

1 1 2 1 ,1 2
1 2 1 2

B β λ λ
λ λ

= + − + +
+ +

, where ( )β  stands 

for complete beta function. We see that the 3λ  and 4λ  parameters influence both 

location and variance, however, 1λ  influences only the first moment, and 2λ  influences 

only the first two moments, i.e., skewness and kurtosis do not depend on 1λ  and 2λ . 

 

The skewness and kurtosis formulas are:  

 
3

3
3 3 2 3

2
2 4

4
4 4 4

2

3 2

4 6 3

C AB A

D AC A B A

μα
σ λ σ

μα
σ λ

− +
= =

− + −
= =

 (7)

with ( ) ( )3 4 3 4
3 3

1 1 3 1 2 ,1 3 1 ,1 2
1 3 1 3

C β λ λ β λ λ
λ λ

= − − + + + + +
+ +

 

 

and ( ) ( ) ( )3 4 3 4 3 4
3 3

1 1 4 1 3 ,1 4 1 ,1 3 6 1 2 ,1 2
1 4 1 4

D β λ λ β λ λ β λ λ
λ λ

= + − + + − + + + + +
+ +

. 

 

A standardized GLD has a zero mean and unit variance, and has a percentile function of 

the form:  

( ) ( ) ( ) 43

2 3 4 4 3

1 1 11
, 1 1

F p p p λλ

λ λ λ λ λ
⎛ ⎞

= − − + −⎜ ⎟+ +⎝ ⎠
 (8)

 

where ( ) ( ) 2
2 3 4 3, sign B Aλ λ λ λ= × − . 

 

From here, we can move more easily to an options pricing environment. We wish to 

make GLD an approximate generalization of the log-normal distribution so we keep the 

mean and the variance the same as in (4), while allowing skewness and kurtosis to be 
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separately determined by the 3λ  and 4λ  parameters. Therefore, the percentile function 

relevant for option pricing will be 

 

( ) ( ) ( )
2

43
0

2 3 4 4 3

1 1 11 1
, 1 1

teF p F p p
σ

λλ

λ λ λ λ λ

⎛ ⎞⎛ ⎞−⎜ ⎟= + − − + −⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠
. (9)

Note that this is equivalent to (5) with 
( )

2

1 0
2 3 4 4 3

1 1 1
, 1 1

teF
σ

λ
λ λ λ λ λ

⎛ ⎞−
= + −⎜ ⎟+ +⎝ ⎠

 

and 
( )

2

2 3 4
2

,

1teσ
λ λ λ

λ =
−

. This will guarantee that the first two moments of the terminal 

distribution will be ( )22 2
0 0 1tF F eσμ σ= = −% % , just like in Black’s model.  

 

The pricing formula for European calls is 

 

( ) ( ) ( )0 3 4 0
, , , , , , , 0rT

TV K F T r e Max F K dp Fσ λ λ
∞−= −∫ . (10)

 

As shown by Corrado (2001), we can simplify this through a change-of-variable approach 

where ( ) TF p F= : 

 

( ) ( ) ( ) ( ) ( )( )
( )

1

0
,0T TK p K

Max F K dp F F K dp F F p K dp
∞ ∞

− = − = −∫ ∫ ∫ . (11)

 

Here ( )p K  stands for the cumulative density function, evaluated at K. While there is no 

closed-form formula for the function, values can be easily found with numerical 

approaches by using the percentile function. 

 

Integrating ( )F p  we get 

 

( )
( ) ( )

( )

( )

( ) ( )
( ) ( ) ( ) ( )( )

2 4

3

2 43

1
1

1 1
1 0

2 3 4 3 4 4 3

11

0
2 3 4 3 4

11 1 1 1
, 1 1 1 1

1 111
, 1 1

t

p K

p K

t

peG F p dp F p p p p

p K p Kp K p KeF p K

λσ
λ

λλσ

λ λ λ λ λ λ λ

λ λ λ λ λ

+
+

++

⎛ ⎞⎛ ⎞−−⎜ ⎟= = + + + −⎜ ⎟
⎜ ⎟⎜ ⎟+ + + +⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞− − −−−⎜ ⎟⎜ ⎟= − + +
⎜ ⎟⎜ ⎟+ +

⎝ ⎠⎝ ⎠

∫
 

 
with the final European call pricing formula being:  
 

( )0 3 4 0 1 2, , , , , , rt rtV K F T r F e G e KGσ λ λ − −= −  (12)

 

where 1G  is defined above and ( )2 1G p K= − .  

 
In a similar way it can be shown that the price for a put is 
 

( ) ( ) ( )0 3 4 2 0 1, , , , , , 1 1rt rt
PV K F T r e K G F e Gσ λ λ − −= − − − . (13)



 16 

3 Econometric Model 
 

The first thing I seek to explain is inter-year variation in implied skewness. As argued in 

the second section, skewness will likely be impacted by weather once corn silking starts. 

Therefore, if we are to infer an impact of storage on skewness across many years, each 

with its own weather peculiarities, we should choose the time before the reproductive 

growth phase starts, i.e., no later than the third week of June. If we were to choose 

skewness observed much earlier than that, we would risk falling in the endogeneity trap. 

Before a marketing year is close to an end, consumption can react to changes in futures 

price, possibly even in options premiums, thus increasing or decreasing carryout stocks. 

It would make little sense then to use expected ending stocks-to-use as a predetermined 

explanatory variable and implied skewness as a dependent variable. To avoid this 

problem, expected ending stocks-to-use ratio, as reported in the June edition of the World 

Agricultural Supply and Demand Estimates (WASDE) report,
2
 is employed as the 

explanatory variable for storage adequacy. 

 

If the supply of corn is not completely inelastic to prices, we would expect rational 

producers to react to tighter expected storage stocks and higher new crop prices with an 

increase in planted acreage, so acreage response is the second variable we need to include 

in the model. To control for elastic supply, I use the measure of change between intended 

plantings, as reported in the Prospective Plantings report
3
 published at the end of March, 

and the actual acreage planted in the previous marketing year. 

 

In addition to supply side covariates, we need to address possible asymmetries in 

uncertainty of demand. Corn is used as livestock feed, an industrial sweetener and as an 

input in ethanol production. All three of these derived demand categories are likely 

impacted by macroeconomic shocks. Therefore, as a measure of demand uncertainty I use 

the June-to-June change in the national unemployment rate as published by the Bureau 

of Labor Statistics. 

 

The final econometric model has the following form: 

 

 

 

where ,t TIS  stands for implied skewness at time t for a contract expiring at time T. The 

change in acreage planted is Th . Since in June we only observe intended plantings, 

expected change in acreage is used in the model. Expected ending stocks-to-use is 

[ ]/t T tE S D  and tUΔ  is the June-to-June change in unemployment rate. Theory predicts 

that all coefficients except the constant should be negative. A stronger acreage response 

                                                 
2 The WASDE report is published by the World Agricultural Outlook Board, an inter-agency body at the United States 

Department of Agriculture. Historical WASDE reports can be accessed at 

http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1194. 
3 Prospective Plantings is a government report produced annually by the National Agricultural Statistics Service, an 

agency of the United States Department of Agriculture. Historical Prospective Plantings reports can be accessed at 

http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1136. 

[ ], 1 2 3/t T t T t T t tIS E h E S D Uα β β β= + Δ + + Δ
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and higher carryout stocks relative to demand imply more ability to buffer adverse 

weather shocks, and will thus reduce skewness. Likewise, a more unstable macroeconomic 

environment will decrease demand for fuel and possibly even meat, thus reducing 

upward pressure on corn prices. 

 

I did not perform an explicit econometric analysis of intra-year dynamics of skewness, 

but I do present detailed visualizations in section 5 that support the argument that 

implied skewness will decline during the reproductive and grain filling growth phases for 

corn. 

 

 

4 Data 
 

Commodity futures for corn as well as options on futures are traded on the Chicago 

Mercantile Exchange (formerly the Chicago Board of Trade). A dataset comprising all 

recorded transactions, i.e., times and sales data for both futures and options on futures, 

for the period 1995 through 2009, was obtained. It includes data for both the regular and 

electronic trading sessions. The total number of transactions exceeds 30 million. Options 

data were matched with the last preceding futures transaction. LIBOR interest rates were 

obtained from the British Bankers’ Association and represent the risk-free rate of return. 

Overnight, 1 and 2 weeks, and 1 through 12 months of maturity LIBOR rates for the 

period 1995 through 2009 were used to obtain the arbitrage-free option pricing formulas. 

In particular, each options transaction was assigned the weighted average of interest rates 

with maturities closest to the contract traded. To avoid serial correlation in residuals 

from estimating implied coefficients in subsequent steps, the data frequency was reduced 

to not less than 15 minutes between transactions for the same options contract. This 

resulted in 11,139 data files, each containing between 200 and 500 recorded transactions 

for a particular trading day for a given commodity. For each data point I separately 

estimate implied volatility using CRR binomial trees with 500 steps. Then, for each data 

point, the price of a European option using Black’s formula is calculated using the same 

parameters (futures price, interest rate, time to maturity) as that recorded for the 

American option. In addition, volatility is set equal to the one implied for American 

options. These “artificial” European options are then used in calibration and 

econometric analysis.  

 

The implied skewness used in the econometric analysis is calculated as a simple average 

over 10 business days following the June WASDE report. Due to high incidence of limit-

move days and days with high intraday price changes, year 2008 is excluded from the 

sample. Including 2008 would render the calculation of higher moments unreliable. 

Descriptive statistics of variables used in the econometric analysis are given in Table 1, 

and corn supply/demand balance sheets are in Table 2. 
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Figure 8 presents a scatter diagram of expected ending stocks-to-use vs. implied skewness. 

Note the inverse relationship between these variables and the beneficial impact of the 

acreage response. For example, in the summer of 1996, carryout stocks-to-use were only 

4.03 percent, two standard deviations below the average for 1995-2009. However, skewness 

was below the mean, due to a 12.2 percent increase in expected acreage, which is 2.2 

standard deviations above the average increase of 1.4 percent. Similarly, in 2007 carryout 

stocks were only 8.56 percent of demand, but a massive acreage increase of 15.5 percent, 

by far the largest in this sample, reduced the skewness below the mean. It is instructive to 

look at 2006 as well. Although ending stocks were bountiful at 19.67 percent of demand, 

a reduction in acreage of 4.6 percent made for the third largest skewness in the sample. 

 

 

5 Estimation Procedure and Results 
 

For each contract, for each trading day, I separately estimate the parameters 3 4, ,and σ λ λ  

in the GLD option pricing formula. In particular, I minimize the squared difference in 

option premiums calculated with the GLD formula, and prices of European options as 

implied by Black’s model. 

 

To proceed, I first need a starting value for the implied volatility of an option with a 

strike price closest to the underlying futures price. The starting values for the 3λ  and 4λ  

parameters were chosen to correspond to the skewness and kurtosis of the terminal 

futures price with the restriction that the logarithm of the terminal price is normally 

distributed with variance equal to 
2tσ , where 

2σ  is the square of the starting value for 

the implied sigma parameter. Excel Solver is used to run the minimization problem, 

utilizing a FORTRAN compiled library (.dll file) created by Corrado (2001) that 

estimates GLD European call prices. A formula for the GLD European put option was 

then programmed in Visual Basic for Applications. 

 

Estimated lambda parameters are employed to calculate implied skewness and kurtosis. 

GLD option prices seem to work rather well, with an average absolute pricing error about 

3/8 of a cent per bushel, and a maximum pricing error usually reaching not more than 2 

cents (this occurs for the least liquid and most away from the money options). While 

there may be issues regarding the robustness of implied parameters with respect to 

starting values, the implied parameters seem to be rather stable from one day to the next. 

For Dec ’07 corn, for example, the skewness estimated between June 11 and June 25, 2005 

varies between 1.15 and 1.26. For that year, the average absolute pricing error was 7/8 of a 

cent per bushel, with a maximum pricing error of 7.9 cents.  

 

For all years in the sample, the implied skewness is 1.2 to 3 times higher than it would be 

if the logarithm of the terminal futures price was really expected to be normal. Implied 

kurtosis is 1.2 to 1.6 times higher than that predicted by Black’s model. We thus see that 

deviations from Black’s model are particularly pronounced in implied skewness.  
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The effects of a “weather scare” on implied skewness is demonstrated in Figure 9. For 

each contract month, skewness was averaged over 15 years (1995-2009) for the matching 

time to maturity horizons. Here we clearly see that skewness does not decrease nearly 

linearly as is the implication of Black’s model. Instead, we see three distinct phases. First, 

before the growing season, skewness is very stable and rather high. Next, during the 

growing season, skewness decreases from late June through October. Finally, over the last 

90 days to option maturity, skewness declines concavely. It is fascinating to see exactly 

the same pattern in all five contract months. This illustrates the rationale for using 

skewness in June to search for the effect of storage – this is the time just before the 

skewness starts declining. 

 

Simple linear regression is estimated for the period 1995-2009 using implied skewness as 

the dependent variable, with constant, expected ending stocks-to-use, expected planned 

change in planted acreage, and changes in the unemployment rate as predetermined 

explanatory variables. Regression statistics are reported in Table 3. Due to very low 

degrees of freedom (10), we have to rely on t-table for critical values, and use a one-tail 

test for the stocks-to-use coefficient. 

 

An increase in stocks-to-use by 1 percentage point reduces skewness by 0.015, and this 

coefficient estimate is statistically significant at the 95 percent confidence level. To put 

this number in perspective, the difference between the lowest and the highest ending 

stocks-to-use recorded in the sample reduces skewness from 1.47 to 1.24, which is 47 

percent of the difference between the highest and the lowest recorded skewness in the 

sample. Coefficients for demand uncertainty and acreage response are also statistically 

significant, have the expected sign, and exhibit much less noise than storage variable. 

 

 

6 Conclusions and Further Research 
 

An options pricing model based on a generalized lambda distribution provides a useful 

heuristic in thinking about determinants of the shape of terminal futures price 

conditional distributions. Results indicate that crop inventories and plant physiology 

play a significant role in determining the expected asymmetry of the terminal 

distribution. In particular, results reveal that implied skewness is much more persistent 

than implied by Black’s model. In years with low implied volatility, implied skewness 

remains much higher than would be the case under the lognormality restriction, and 

dynamics are dominated not by time to maturity, but by temporal patterns in resolution 

of uncertainty regarding crop yields.  

 

Further research will focus on extending this analysis to soybeans and wheat for which 

times and sales data are also available. The U.S. is a major world player in corn, with 55.6 

percent of world exports. That is higher than 45.3 percent of world exports of soybeans, 

and especially than 17.7 percent in wheat. Extending the analysis to other crops will 

identify the effect of trade and non-overlapping growing seasons in different countries on 
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the magnitude, inter-year differences, and intra-year dynamics on implied higher 

moments of the terminal price distribution. 

 

Thus far, the literature has focused on evaluating the impacts of government reports on 

implied volatility coefficients. The model presented here allows us to extend this to 

higher moments and examine how reports (i.e., information) influence the entire 

distribution of prices, not just the second moment. For example, we could use weekly 

crop progress reports to explain inter-year differences in the evolution of skewness 

through the summer months. 

 

In the absence of high frequency data, many researchers use end-of-day reported prices 

for futures and options to evaluate implied higher moments. By re-estimating this model 

using only end-of-day data it is possible to examine the amount of noise and possible 

direction of bias such an approach brings to estimates of implied higher moments.  

 

What happens when storage is not available to partially absorb the shocks to supply? It 

would be interesting to use the GLD option pricing model to examine the evolution and 

determinants of higher moments of non-storable commodities. Further research is needed 

to examine the impact of durability of production factors for commodities that are 

themselves not storable.  

 

Finally, impacts of market liquidity and trader composition on the levels and stability of 

implied higher moments is a promising new area for research. With careful design of the 

analysis, we may be able to find a way to separate the part of the option price that is due 

to implied terminal price distributions from additional premium influences incurred due 

to hedging pressure or lack of market liquidity. 
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Appendix 
 
 

Figure 1  Typical Pattern for Implied Volatility Coefficients for Options on Agricultural Futures 
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Notes: Implied volatility coefficients are estimated for options on Corn December 2006 futures contract, on 

6/26/2006 using Cox, Ross and Rubinstein’s binomial tree with 500 steps. Underlying futures price was 

$2.49/bu. Dots represent implied volatility coefficients for each strike, and smooth line is fitted quadratic 

trend.  
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Figure 2  Evolution of Implied Volatility Curve for Options on Dec’ 04 and Dec ’06 Corn Futures 
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Notes: For each day, implied volatility is estimated for each traded option using 15-minute interval data. 

Quadratic trend curve is fitted to produce implied volatility curve. 30-day moving average is calculated to 

increase smoothness of the volatility surface and make it easier to see principal characteristic of the IV curve 

evolution. Z-axis shows option moneyness calculated as logarithm of the ratio between option strike (K) and 

underlying futures price Ft. When option strike price is equal to current futures price moneyness is zero.  
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Figure 3  Effects of Excess Kurtosis and Positive Skewness on Implied Volatility 
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Notes: S stands for skewness, K for kurtosis of terminal futures log-prices. Option premiums are calculated 

via Rubinstein’s Edgeworth binomial trees that allow for non-normal skewness and kurtosis, and implied 

volatility is inferred using Cox, Ross and Rubinstein’s binomial tree which assumes normality in terminal 

futures prices. The black line in the above diagram with S=0 and K=3 corresponds to assumptions of Black’s 

model, and in such a scenario implied volatility curve is flat across all strikes. Excess kurtosis (K>3) creates 

convex and nearly symmetric “smiles”, and positive skewness produces an upward-sloping implied volatility 

curve. 
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Figure 4  New Crop Price Distributions Conditional on Storage Adequacy 
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Notes: Reproduced from Williams and Wright (1991). Conditional price distributions obtained from rational 

expectations competitive equilibrium model with storage. Time frequency is one year, i.e., t+1 represents next 

harvest. New crop price distributions are conditional on information known after old crop carryout stocks 

have been determined, but before weather shock is revealed. Price and quantity are standardized to make non-

stochastic equilibrium at ($100, 100 units). Higher prices at time t reflect lower carryout stocks, and 

correspond to higher skewness of new crop price distribution. 

 

 

Figure 5  Weather Stress in the Corn Crop 
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Notes: Reproduced from Shaw et al. (1988). This figure shows the relationship between the age of corn crop 

and percentage yield reduction due to one day of moisture stress. Outer lines show boundaries of 

experimental results, while the middle line shows the average. 
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Figure 6  Monthly Projected Corn Yield 1980-2008 - Deviation from Trend 
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Notes: For each year, trend yield was calculated as simple linear regression over previous years, starting in 

1960. Monthly projected yields were obtained from WASDE reports either directly or by calculations based on 

projected planted area and expected production size.  

 

 

Figure 7  Monthly Projected Corn Yield 1980-2008 - Deviation from Final Estimate 
(January) 
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Notes: For each month, projected yield was obtained from WASDE reports. Final estimates are taken from 

WASDE reports published in January.   
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Figure 8  Relationship between Implied Skewness and Expected Ending Stocks-to-Use 
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Notes: Years with increase in intended cultivated acreage of 5 or more percent are marked with green rhombs. 

Years with June-to-June increase in unemployment rate of 1 percent or more are marked with blue triangles. 

 

 

Figure 9  Options on Corn Futures: Dynamics of Implied Skewness 
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Figure 9  Continued 

 
Delivery Month: March 

 
 

 
Delivery Month: May 
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Delivery Month: July 
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Figure 9  Continued 

 
Delivery Month: September 
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Notes: Implied skewness is estimated for each contract and for each trading day separately using generalized 

lambda distribution pricing model for options on commodity futures. Graphs show averages taken over 

1995-2009 for each contract and each time to maturity. Corn silking is the reproductive stage of corn growth 

where weather starts having major impact on final grain yield. In the major U.S. corn growing area corn 

usually starts silking in the last days of June, and corn harvest normally begins in late September. 

 

 

Table 1  Determinants of Implied Skewness: Descriptive Statistics 

Variable Mean Standard deviation Min Max 

Implied skewness 1.33 0.14 1.07 1.54 

Ending stocks-to-use (%) 
WASDE June projection  

14.4 5.36 4.03 21.23 

Intended acreage planted – percentage change 1.37 5.89 -4.84 15.48 

Unemployment rate change 0.17 0.23 -0.7 4.00 

 

Notes: Implied skewness was calculated for December corn contracts as average for implied parameters over 

10 trading days following June WASDE report. On average, 100-150 data points were used in estimating 

implied parameters for each trading day in the stated periods.  
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Table 3  Determinants of Implied Sskewness: Regression Rresults 

Explanatory variables Dependent variable: GLD implied skewness 

Constant 1.55 
(0.10) 

Ending stocks-to-use (%) -1.28 
(0.64) 

Intended acreage planted   
      percentage change  

-1.52 
(0.58) 

Unemployment 
      percentage change 

-0.07 
0.02 

Degrees of freedom 10 

Mean root square error 0.075 

2R  0.66 

 

Notes: Critical t-statistic for 10 d.f. for 95 percent is 1.81 for one-tail tests and 2.22 for two-tail tests. All 

coefficients are statistically significant at a 95 percent confidence level (ending stocks-to-use coefficient is 

significant at 95 percent using one-tail test or 90 percent using two-tail test).  
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